Targeted Reduction of Vascular Msx1 and Msx2 Mitigates Arteriosclerotic Calcification and Aortic Stiffness in LDLR-Deficient Mice Fed Diabetogenic Diets
نویسندگان
چکیده
When fed high-fat diets, male LDLR(-/-) mice develop obesity, hyperlipidemia, hyperglycemia, and arteriosclerotic calcification. An osteogenic Msx-Wnt regulatory program is concomitantly upregulated in the vasculature. To better understand the mechanisms of diabetic arteriosclerosis, we generated SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice, assessing the impact of Msx1+Msx2 gene deletion in vascular myofibroblast and smooth muscle cells. Aortic Msx2 and Msx1 were decreased by 95% and 34% in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) animals versus Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) controls, respectively. Aortic calcium was reduced by 31%, and pulse wave velocity, an index of stiffness, was decreased in SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice vs. controls. Fasting blood glucose and lipids did not differ, yet SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) siblings became more obese. Aortic adventitial myofibroblasts from SM22-Cre;Msx1(fl/fl);Msx2(fl/fl);LDLR(-/-) mice exhibited reduced osteogenic gene expression and mineralizing potential with concomitant reduction in multiple Wnt genes. Sonic hedgehog (Shh) and Sca1, markers of aortic osteogenic progenitors, were also reduced, paralleling a 78% reduction in alkaline phosphatase (TNAP)-positive adventitial myofibroblasts. RNA interference revealed that although Msx1+Msx2 supports TNAP and Wnt7b expression, Msx1 selectively maintains Shh and Msx2 sustains Wnt2, Wnt5a, and Sca1 expression in aortic adventitial myofibroblast cultures. Thus, Msx1 and Msx2 support vascular mineralization by directing the osteogenic programming of aortic progenitors in diabetic arteriosclerosis.
منابع مشابه
Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis.
RATIONALE Vascular fibrosis and calcification contribute to diabetic arteriosclerosis, impairing Windkessel physiology necessary for distal tissue perfusion. Wnt family members, upregulated in arteries by the low-grade inflammation of "diabesity," stimulate type I collagen expression and osteogenic mineralization of mesenchymal progenitors via beta-catenin. Conversely, parathyroid hormone (PTH)...
متن کاملCan the NK family of osteoblast homeodomain transcription factors signaling be a magic bullet to reverse calcification-induced vasculopathy in diabetes?
Human vascular calcification burden has existed for at least 5 millennia and has long been a major area of interest in the cardiovascular physiopathology research. Abnormal calcium deposition occurs in almost all arterial beds in both the media and intima in metabolic and diabetic diseases. Calcification of arteries reduces arterial elastance and compromises cardiovascular hemodynamics, which a...
متن کاملDiet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice.
Vascular calcification is common in people with diabetes and its presence predicts premature mortality. To clarify the underlying mechanisms, we used low density lipoprotein receptor-deficient (LDLR -/-) mice to study vascular calcification in the ascending aorta. LDLR -/- mice on a chow diet did not develop obesity, diabetes, atheroma, or vascular calcification. In contrast, LDLR -/- mice on h...
متن کاملAortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr-/- mice.
OBJECTIVE Aortic calcification is prevalent in type II diabetes (T2DM), enhancing morbidity and tracking metabolic syndrome parameters. Ldlr(-/-) mice fed high-fat "Westernized" diets (HFD) accumulate aortic calcium primarily in the tunica media, mediated via osteogenic morphogens and transcriptional programs that induce aortic alkaline phosphatase (ALP). Because elevated TNF-alpha is character...
متن کاملVascular calcification and aortic fibrosis: a bifunctional role for osteopontin in diabetic arteriosclerosis.
OBJECTIVE Calcification and fibrosis reduce vascular compliance in arteriosclerosis. To better understand the role of osteopontin (OPN), a multifunctional protein upregulated in diabetic arteries, we evaluated contributions of OPN in male low-density lipoprotein receptor (LDLR)-/- mice fed a high-fat diet. METHODS AND RESULTS OPN had no impact on high-fat diet-induced hyperglycemia, dyslipide...
متن کامل